1, My Address, My Street, New York City, NY, USA

ENVIRONMENTAL PROTECTION MANAGEMENT

Public health risks related to food safety issues in food safety articles 2018 the food market a systematic literature review Environmental Health and Preventive Medicine Full Text
Home » food safety articl  »  Public health risks related to food safety issues in food safety articles 2018 the food market a systematic literature review Environmental Health and Preventive Medicine Full Text
Public health risks related to food safety issues in food safety articles 2018 the food market a systematic literature review Environmental Health and Preventive Medicine Full Text
PubMed   PubMed Central   Google Scholar In 9 of full-text articles included in this review, food adulteration has been discussed as a major public health risk associated with food safety issues in the food market. Most of the foodstuffs in the market are adulterated in varying degrees. Chemicals ; items which are not the genuine component of foods ; poor-quality products; and physical or inert agents are the commonest adulterants added to different food items . Neltner TG, Kulkarni NR, Alger HM, Maffini MV, Bongard ED, Fortin ND, et al. Navigating the US food additive regulatory program. Compr Rev Food Sci Food Saf. 2011;10:342–68. Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod Toxicol. 2011;31:528–33. This review revealed that foods past their use-by dates in the food market are major threats for consumers. This malpractice is more common in less developed countries and rural markets . Growth of microorganisms in expired foods is very common. Most of these microorganisms are pathogenic and some microorganisms produce toxic substances as they develop . Giammanco GM, Pepe A, Aleo A, D’Agostino V, Milone S, Mammina C. Microbiological quality of Pecorino Siciliano “primosale” cheese on retail sale in the street markets of Palermo, Italy. 2011;34:New Microbiologica, 179–85. Kunyanga C, Imungi JK, Okoth MW. Diversity and characteristics of supplementary foods sold and consumed by vulnerable groups in Kenya. J Applied Biosci. 2011;45:3019–31. Garcia-Vazquez E, Perez J, Martinez JL, Pardinas AF, Lopez B, Karaiskou N, et al. High level of mislabeling in Spanish and Greek hake markets suggests the fraudulent introduction of African species. J Agric Food Chemistry. 2010;59:475–80. Ali ANMA. Food safety and public health issues in Bangladesh: a regulatory concern. Eur Food Feed Law Rev. 2013:31–40. PubMed   PubMed Central   Article   CAS   Google Scholar Jacquet JL, Pauly D. Trade secrets: renaming and mislabeling of seafood. Marine Policy. 2008;32:309–18. This systematic literature review identified common food safety–related public health risks in the food market. The results imply that the local and international food marketing continues to have significant impacts on health of the public. The food market increases internationalization of health risks as the food supply chains cross multiple national borders. Therefore, effective national food control systems are essential to protect the health and safety of the public. Countries have to implement and enforce risk-based food control strategies. Countries need also assure the safety and quality of their foods entering international trade and ensure that imported foods conform to national requirements. Moreover, food producers and retail sectors have to respect the national food safety guideline and have to work to protect the safety of their customers Additional file 1 . The search strategy identified 2641 titles and abstracts as of 13 June 2019. We obtained 1992 title and abstracts after we removed duplicates. Following assessment by title and abstract, 705 articles were retrieved for more evaluation and 344 articles were assessed for eligibility. Finally, 81 articles were included for systematic literature review based on the inclusion criteria . This review identified that microbial contamination, chemical contamination, adulteration, misuse of food additives, mislabeling, genetically modified foods, and outdated foods are common public health risks related with food safety issues in the food market. In the food market, food can become contaminated in one country and cause health problems in another. These food safety issues cause exposure of consumers to biological, chemical, and physical hazards so that endanger health of the public. The origin of food hazards can be described as a chain which commences on the source and continues with transportation, further processing steps, merchandising events and finally ends with the consumer . Overall, this review suggested that food safety–related public health risks are more common in developing countries than developed countries. This can be justified that foods get easily contaminated with microbes due to the poor hygiene and sanitation in developing countries . Moreover, hence the regulatory services are weak in developing countries, most food sellers may not comply with food hygiene and safety requirements or standards . In developing countries, the legislation enforcement is still weak about administrating the concentration of harmful contaminants in the food . In addition, there is inadequate information and technology to detect fake and fraud products . Regions where the included full-text articles conducted In this review, 81 of 1992 full-text articles matched the inclusion criteria. The overwhelming majority, 74 of 81 of the included full-text articles are research articles; 2 are short communications; 2 are regulatory papers, 1 is field inspection; 1 is research note; and the other 1 is thesis. Of the included full-text articles, 30 of 81 are conducted in Asia; 4 of 81 are conducted in multiple countries in the same region or across regions; and 1of 81 is not region specific . Muñoz-Colmenero M, Juanes F, Dopico E, Martinez JL, Garcia-Vazquez E. Economy matters: a study of mislabeling in salmon products from two regions, Alaska and Canada and Asturias . Fisheries Res. 2017;195:180–5. © 2021 BioMed Central Ltd unless otherwise stated. Part of Springer Nature . Schrenk D. Chemical food contaminants. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2004;47:841–7. Halford NG, Shewry PR. Genetically modified crops: methodology, benefits, regulation and public concerns. Br Med Bull. 2000;56:62–73. Stevens LJ, Burgess JR, Stochelski MA, Kuczek T. Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children. Clin Pediatr. 2014;53:133–40. Food safety is being challenged nowadays by the global dimensions of food supply chains . Foods in the international market may be frauded as different parties such as manufacturers, co-packers, distributors, and others along the chain of distribution involve in the national or international trade . Food safety in the food market is one of the key areas of focus in public health, because it affects people of every age, race, gender, and income level around the world. The local and international food marketing continues to have significant impacts on food safety and health of the public. Food supply chains now cross multiple national borders which increase the internationalization of health risks . This systematic review of literature was, therefore, conducted to identify common public health risks related to food safety issues in the food market. This review provides evidence to improve food safety in the food market using risk-based food safety strategies. Healthcare providers, researchers, and policy makers may use the results of this systematic literature review to protect the public from undue health effects due to consumption of foods with poor quality and safety. PubMed   PubMed Central   CAS   Google Scholar Kleter G, Prandini A, Filippi L, Marvin H. Identification of potentially emerging food safety issues by analysis of reports published by the European Community’s Rapid Alert System for Food and Feed during a four-year period. Food Chem Toxicol. 2009;47:932–50. Spink J, Moyer DC. Defining the public health threat of food fraud. J Food Sc. 2011;76:R157–R63. BALUKA SA, MILLER R, KANEENE JB. Hygiene practices and food contamination in managed food service facilities in Uganda. African J Food Sci. 2015;9:31–42. In this systematic review, we identified that GM foods are becoming an increasing public health risk. The included full-text articles reported that a wide range of health consequences associated with consumption of GM foods . Possible hazards of GM foods include the potential for pleiotropic and insertional effects , effects on animal and human health resulting from the increase of anti-nutrients, potential effects on human health resulting from the use of viral DNA in plants, possible transfer of antibiotic-resistant genes to bacteria in gastrointestinal tract, and possible effects of GM foods on allergic responses . However, the health effects of genetically modified foods are still debatable. Different lab-animal-based studies reported that there is no safety difference between GM and non-GM foods or the health concerns are not confirmed well . Some others argue that despite the advances in food crop agriculture, the current world situation is still characterized by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally fortified staple foods to malnourished populations . This review identified that microbial contamination of foods in the food market is commonly reported in many studies. Different bacterial species and funguses were the commonest diseases causing pathogens identified . Failure to apply food safety strategies in every stage of the food supply chain, for example bad food handling practices, poor production process, poor agricultural practices, poor transportation system, poor marketing practices, and poor sanitation lead to microbial contamination of foods . Moreover, fraud of foods such as adulteration, mislabeling, and selling of spoiled or expired foods are also causing microbial contamination . Microbial contamination of foods causes millions of diseases and thousands of deaths . This review also shows that total coliforms, fecal coliforms, and different fungus were commonly reported in developing countries than developed countries. This might be due to the fact that fecal contamination of foods and the environment is common in developing countries due to poor sanitation condition . Moreover, the temperature and air system of food storage areas are not well regulated in developing countries. This situation creates favorable condition for molds. On the other hand, different Campylobacter species were reported in developed countries. This might be due to the fact that advancement of molecular techniques to identify these microorganisms. Developing countries lack specialized cultivation techniques to culture these organisms . The standard culture–based technique, which is a predominant detection method in developing countries, is not effective for Campylobacter species . PubMed   PubMed Central   CAS   Google Scholar Omura Y, Price R, Olcott H. Histamine—forming bacteria isolated from spoiled skipjack tuna and jack mackerel. J Food Sci. 1978;43:1779–81. Muñoz-Colmenero M, Blanco O, Arias V, Martinez JL, Garcia-Vazquez E. DNA authentication of fish products reveals mislabeling associated with seafood processing. Fisheries. 2016;41:128–38. JBI mixed methods data extraction form following a convergent integrated approach. Available at s.org/display/MANUAL/Appendix 8.1 JBI Mixed Methods Data Extraction Form following a Convergent Integrated Approach . Accessed on 12 July 2019. Minatoya M, Itoh S, Yamazaki K, Araki A, Miyashita C, Tamura N, et al. Prenatal exposure to bisphenol A and phthalates and behavioral problems in children at preschool age: the Hokkaido Study on Environment and Children’s Health. Environ Health Prev Med. 2018;23:43. Lang T. The new globalisation, food and health: is public health receiving its due emphasis? J Epidemiol Commun Health. 1998;52:538. Mailafia S, God’spower Richard Okoh HO, Olabode K, Osanupin R. Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria. Veterinary world. 2017;10:393. CAS   PubMed   PubMed Central   Google Scholar Afzal A, Mahmood M, Hussain I, Akhtar M. Adulteration and microbiological quality of milk . Pakistan J Nutr. 2011;10:1195–202. See A, Abu BS, Fatimah AB, Nor AY, Ahmed SA, Heng L. Risk and health effect of boric acid. Am J Appl Sci. 2010;7:620–7. Kruse H. Food safety in an international perspective. J. Verbr. Lebensm. 2015;10:105–7. s00003-015-0948-6 . You can also search for this author in PubMed   Google Scholar Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5:258. Khairuzzaman M, Chowdhury FM, Zaman S, Al Mamun A, Bari M. Food safety challenges towards safe, healthy, and nutritious street foods in Bangladesh. Int J Food Sci. 2014;2014. Tittlemier SA, Forsyth D, Breakell K, Verigin V, Ryan JJ, Hayward S. Polybrominated diphenyl ethers in retail fish and shellfish samples purchased from Canadian markets. J Agricult Food Chem. 2004;52:7740–5. CAS   PubMed   PubMed Central   Google Scholar The author declares that he has no competing interests. Bryden WL. Mycotoxins in the food chain: human health implications. Asia Pacific J Clin Nutr. 2007;16:95–101. Cao P, Yang D, Zhu J, Liu Z, Jiang D, Xu H. Estimated assessment of cumulative dietary exposure to organophosphorus residues from tea infusion in China. Environ Health Prev Med. 2018;23:7. Cawthorn D-M, Steinman HA, Witthuhn RC. DNA barcoding reveals a high incidence of fish species misrepresentation and substitution on the South African market. Food Res Int. 2012;46:30–40. Aung MM, Chang YS. Traceability in a food supply chain: safety and quality perspectives. Food Control. 2014;39:172–84. This systematic literature review identified common food safety–related public health risks in the food market. The results imply that the local and international food marketing continues to have significant impacts on health of the public. The food market increases internationalization of health risks as the food supply chains cross multiple national borders. Therefore, effective national risk-based food control systems are essential to protect the health and safety of the public. Countries need also assure the safety and quality of their foods entering international trade and ensure that imported foods conform to national requirements. All published and unpublished quantitative, qualitative, and mixed method studies were searched from electronic databases using a three step searching. Analytical framework was developed using the PICo method. The methodological quality of the included studies was assessed using mixed methods appraisal tool version 2018. The included full-text articles were qualitatively analyzed using emergent thematic analysis approach to identify key concepts and coded them into related non-mutually exclusive themes. We then synthesized each theme by comparing the discussion and conclusion of the included articles. Emergent themes were identified based on meticulous and systematic reading. Coding and interpreting the data were refined during analysis. Wu F. Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 2014;8:137–42. Dona A, Arvanitoyannis IS. Health risks of genetically modified foods. Crit Rev Food Sci Nutr. 2009;49:164–75. Nagalakshmi K, Annam P-K, Venkateshwarlu G, Pathakota G-B, Lakra WS. Mislabeling in Indian seafood: an investigation using DNA barcoding. Food Control. 2016;59:196–200. Mody RK, Griffin PM. Foodborne disease. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases 9th edition, 2 volume set: Elsevier; 2015. p. 1283-96. e3. eBook ISBN: 9780323550277 The full text articles included in this review are attached as a supplementary file . Moradi-Khatoonabadi Z, Amirpour M, AkbariAzam M. Synthetic food colours in saffron solutions, saffron rice and saffron chicken from restaurants in Tehran, Iran. Food Additives Contaminants: Part B. 2015;8:12–7. Elson R, Burgess F, Little C, Mitchell R. Services LACooR, Agency tHP. Microbiological examination of ready-to-eat cold sliced meats and pâté from catering and retail premises in the UK. J Appl Microb. 2004;96:499–509. Radwan MA, Salama AK. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem Toxicol. 2006;44:1273–8. Freedman DA, Bell BA. Access to healthful foods among an urban food insecure population: perceptions versus reality. J Urban Health. 2009;86:825–38. In this review, 21 of 81 full-text articles reported the presence of pathogenic microorganisms in different food items in the food market. These studies identified different diseases causing bacteria mainly Salmonella spp., Escherichia coli , Klebsiella spp., Shigella spp., Enterobacter spp., Proteus spp., Citrobacter spp. Staphylococcus aureus , Campylobacter spp., Listeria spp., Vibrio , Alklegens spp., Bacillus cereus , Pseudomonas spp., Clostridium perfringens , Arcobacter spp., and Enterococcus spp. Moreover, different fungus such as Blastomyces, Fusarium spp., Mucor spp., Aspergillus niger , Fusarium avenaceum , Penicillium digitatum , Rhizopus stolonifer , Saccharomyces species, Fusarium solani , Aspergillus flavus , Saccharomyces dairensis , and Saccharomyces exiguus were identified from different food items from food stores or shops. The included studies also reported that some of the microorganisms are resistant to different antimicrobials . The results also show that total coliforms, fecal coliforms, and different fungus were commonly reported in developing countries than developed countries. On the other hand, different Campylobacter species were reported in developed countries than developed countries. Tsai C-F, Kuo C-H, Shih DY-C. Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry. J Food Drug Anal. 2015;23:453–62. Podolak R, Enache E, Stone W, Black DG, Elliott PH. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. J Food Protect. 2010;73:1919–36. Petigara Harp B, Miranda-Bermudez E, Barrows JN. Determination of seven certified color additives in food products using liquid chromatography. J Agricul Food Chem. 2013;61:3726–36. Hosseini A. The prevalence of bacterial contamination of table eggs from retails markets by Salmonella spp., Listeria monocytogenes, Campylobacter jejuni and Escherichia coli in Shahrekord, Iran. Jundishapur J Microbiol 2011;4:249. Yagoub SO. Isolation of Enterobacteriaceae and Pseudomonas spp. from raw fish sold in fish market in Khartoum state. Afr J Bacteriol Res. 2009;1:085–8. Nasreen S, Ahmed T. Food adulteration and consumer awareness in Dhaka City, 1995-2011. Journal of health, population, and nutrition. 2014;32:452. Armani A, Guardone L, La Castellana R, Gianfaldoni D, Guidi A, Castigliego L. DNA barcoding reveals commercial and health issues in ethnic seafood sold on the Italian market. Food Control. 2015;55:206–14. Everstine K, Spink J, Kennedy S. Economically motivated adulteration of food: common characteristics of EMA incidents. J Food Protect. 2013;76:723–35. Rhodehamel EJ. Overview of Biological, Chemical, and Physical Hazards. In: Pierson MD, Corlett DA, editors. HACCP. Springer Link, Boston. 1992; pp 8-28. Filiousis G, Johansson A, Frey J, Perreten V. Prevalence, genetic diversity and antimicrobial susceptibility of Listeria monocytogenes isolated from open-air food markets in Greece. Food Control. 2009;20:314–7. Ayza A, Belete E. Food adulteration: its challenges and impacts. Food Sci Qual Manag. 2015;41:50–6. PubMed   PubMed Central   Google Scholar Zhang W, Xue J. Economically motivated food fraud and adulteration in China: an analysis based on 1553 media reports. Food control. 2016;67:192–8. Contamination of foods with hazardous chemicals has been reported as a major public health concern associated with the food market in individual studies included in this review . The phases of food processing, packaging, transportation, and storage are significant contributors to food contamination . Food contaminants include environmental contaminants, food processing contaminants, unapproved adulterants and food additives, and migrants from packaging materials. Environmental contaminants are impurities that are either introduced by human or occurring naturally in water, air, or soil. Food processing contaminants include those undesirable compounds, which are formed in the food during baking, roasting, canning, heating, fermentation, or hydrolysis. The direct food contact with packaging materials can lead to chemical contamination due to the migration of some harmful substances into foods. Use of unapproved or erroneous additives may result in food contamination . Chemical contamination of foods is responsible millions of cases of poisoning with thousands of hospitalizations and deaths each year . Ravichandran S. Food adulteration has taken away the joy of life. Int J MediPharm Res. 2015;1:150–4. Lawal B. Overview of the socioeconomic implications and management of product faking and adulteration. Greener J Bus Manag Stud. 2013;3:119–31. Islam M. Study on bacteriological quality of street-vended and expired food items collected from different areas in Dhaka City. Bangladesh: East West University; 2017. Dharod JM, Paciello S, Bermúdez-Millán A, Venkitanarayanan K, Damio G, Pérez-Escamilla R. Bacterial contamination of hands increases risk of cross-contamination among low-income Puerto Rican meal preparers. J Nutr Educ Behav. 2009;41:389–97. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Thompson LA, Darwish WS. Environmental chemical contaminants in food: review of a global problem. J Toxicol. 2019;2019:2345283. Grace D. Food safety in low and middle income countries. Int J Environ Res Public Health. 2015;12:10490–507. CAS   PubMed   PubMed Central   Google Scholar JY NIE, LX KUANG, ZX LI, WH XU, Cheng W, QS CHEN, et al. Assessing the concentration and potential health risk of heavy metals in China’s main deciduous fruits. J Integr Agric. 2016;15:1645–55. Pryme IF, Lembcke R. In vivo studies on possible health consequences of genetically modified food and feed—with particular regard to ingredients consisting of genetically modified plant materials. Nutrition Health. 2003;17:1–8. Vindigni SM, Srijan A, Wongstitwilairoong B, Marcus R, Meek J, Riley PL, et al. Prevalence of foodborne microorganisms in retail foods in Thailand. Foodborne Pathogens Disease. 2007;4:208–15. Schecter A, Colacino J, Haffner D, Patel K, Opel M, Päpke O, et al. Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environmental health perspectives. 2010;118:796–802. Hunter PR, Hornby H, Campbell CK, Browne KF. Isolation of food spoilage yeasts from salads purchased from delicatessens. British Food J. 1994;96:23–5. Waghray K, Gulla S, Thyagarajan P, Vinod G. Adulteration pattern in different food products sold in the twin cities of Hyderabad and Secunderabad-India. Journal of Dairying Foods & Home Sciences. 2011;30. In this systematic review of literature, 4 of 81 of the included full-text articles discussed that GM foods are becoming an increasing public health risk. Hypertension, stroke, diabetes, obesity, lipoprotein metabolism disorder, Alzheimer’s, Parkinson’s, multiple sclerosis, hepatitis C, end-stage renal disease, acute kidney failure, cancers of the thyroid/liver/bladder/pancreas/kidney, myeloid leukemia, diarrhea, vomiting, difficulty in breathing, respiratory problems, hormonal imbalances and susceptibility to infection or immunosuppression, allergenic or rashes, and chemical toxicity are health problems reported in the included full-text articles . Assefa A, Teka F, Guta M, Melaku D, Naser E, Tesfaye B, et al. Laboratory investigation of epidemic dropsy in Addis Ababa, Ethiopia. Ethiop Med J. 2013:21–32. Anyanwu RC, Jukes DJ. Food systems and food control in Nigeria. Food Policy. 1991;16:112–26. Carvalho DC, Palhares RM, Drummond MG, Gadanho M. Food metagenomics: next generation sequencing identifies species mixtures and mislabeling within highly processed cod products. Food Control. 2017;80:183–6. CAS   PubMed   PubMed Central   Google Scholar Johnson PE. Health aspects of food additives. Am J Public Health Nations Health. 1966;56:948–51. Banerjee M, Sarkar PK. Microbiological quality of some retail spices in India. Food Res Int. 2003;36:469–74. De Carvalho A, Costa E, Mantovani H, Vanetti M. Effect of bovicin HC5 on growth and spore germination of Bacillus cereus and Bacillus thuringiensis isolated from spoiled mango pulp. Journal of applied microbiology. 2007;102:1000–9. Public health risks related to food safety issues in food safety articles 2018 the food market a systematic literature review Environmental Health and Preventive Medicine Full Text
Public health risks related to food safety issues in food safety articles 2018 the food market a systematic literature review Environmental Health and Preventive Medicine Full Text
Bernstein JA, Bernstein IL, Bucchini L, Goldman LR, Hamilton RG, Lehrer S, et al. Clinical and laboratory investigation of allergy to genetically modified foods. Environ Health Perspect. 2003;111:1114–21. OR "public health") AND ) OR OR "public health") AND hazards)) OR OR "public health") AND problems)) AND OR "food safety") OR OR "food quality")) OR AND ))) AND AND market) OR AND trade)) OR OR "food supply") AND chain)) Carrasco E, Morales-Rueda A, García-Gimeno RM. Cross-contamination and recontamination by Salmonella in foods: a review. Food Res Int. 2012;45:545–56.
Jay JM, Loessner MJ, Golden DA. Modern food microbiology: Springer Science & Business Media; 2008. Available at springer.com/gp/book/9780387231808 . Accessed on 10 August 2019. The author would like to thank The Ohio State University Health Science Library for helping him to access different electronic databases. Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, et al. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ Health Perspect. 2014;122:213–21. By using this website, you agree to our Terms and Conditions , California Privacy Statement , Privacy statement and Cookies policy. Manage cookies/Do not sell my data we use in the preference centre. Atidégla SC, Huat J, Agbossou EK, Saint-Macary H, Glèlè KR. Vegetable contamination by the fecal bacteria of poultry manure: case study of gardening sites in southern Benin. Int J Food Sci. 2016;2016. PubMed   PubMed Central   Article   CAS   Google Scholar Barham GS, Khaskheli M, Soomro AH, Nizamani ZA. Extent of extraneous water and detection of various adulterants in market milk at Mirpurkhas, Pakistan. J Agri Vet Sci. 2014;7:83–9. All published and unpublished quantitative, qualitative, and mixed method studies conducted on food safety–related health risks for the general public in the food market were included. Governmental and other organizational reports were also included. Articles published other than English language, citations with no abstracts and/or full texts, duplicate studies, and studies with poor quality were excluded. Othman ZAA. Lead contamination in selected foods from Riyadh City market and estimation of the daily intake. Molecules. 2010;15:7482–97. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver applies to the data made available in this article, unless otherwise stated. Chin TC, Adibah A, Hariz ZD, Azizah MS. Detection of mislabelled seafood products in Malaysia by DNA barcoding: improving transparency in food market. Food Control. 2016;64:247–56. Mislabeling of food products has been mentioned as a major public health risk associated with food safety in the food market in 17 of 81 full-text articles included in this review. All of the 17 studies reported that significant proportion of food samples collected from supermarkets, food stores, shops, and restaurants were genetically identified as entirely different species from that identified on the product labels, and therefore were considered as mislabeled. The studies witnessed that seafood is the most commonly mislabeled food product . Henson S, Jaffee S. Understanding developing country strategic responses to the enhancement of food safety standards. World Econ. 2008;31:548–68. Moret S, Purcaro G, Conte LS. Polycyclic aromatic hydrocarbons levels in propolis and propolis-based dietary supplements from the Italian market. Food Chem. 2010; food safety articles 2018 122:333–8. Rossi F, Gaio E, Torriani S. Staphylococcus aureus and Zygosaccharomyces bailii as primary microbial contaminants of a spoiled herbal food supplement and evaluation of their survival during shelf life. Food Microbiol. 2010;27:356–62. Jonnalagadda PR, Rao P, Bhat RV, Nadamuni NA. Type, extent and use of colours in ready-to-eat foods prepared in the non-industrial sector–a case study from Hyderabad, India. Int J Food Sci Technology. 2004;39:125–31. Galal-Khallaf A, Ardura A, Borrell YJ, Garcia-Vazquez E. PCR-based assessment of shellfish traceability and sustainability in international Mediterranean seafood markets. Food Chemistry. 2016;202:302–8. Jain A, Mathur P. Evaluating hazards posed by additives in food-a review of studies adopting a risk assessment approach. Curr Res Nutr Food Sci J. 2015;3:243–55. Christiansen H, Fournier N, Hellemans B, Volckaert FA. Seafood substitution and mislabeling in Brussels' restaurants and canteens. Food Control. 2018;85:66–75. This manuscript does not contain any individual person’s data. Paparini A, Romano-Spica V. Public health issues related with the consumption of food obtained from genetically modified organisms. Biotechnology annual review. 2004;10:85–122. We developed the components of the analytical framework using the PICo method. The population for this review was the public over the globe. The phenomenon of interest for this review was public health risks associated with food safety. The context was the food market . The reviewers sat together to discuss and refine the framework. Rao P, Bhat R, Sudershan R, Krishna T, Naidu N. Exposure assessment to synthetic food colours of a selected population in Hyderabad, India. Food Addit Contam. 2004;21:415–21. CAS   PubMed   PubMed Central   Google Scholar PubMed   PubMed Central   Google Scholar Salih MAM, Yang S. Common milk adulteration in developing countries cases study in China and Sudan: a review. J Adv Dairy Res. 2017;5:192. In this systematic review of literature, 11 of the full-text articles reported that misuse of food additives in the food market endangers public health . Food additive is any substance not normally consumed as a food by itself; not normally used as a typical ingredient of the food ; and added intentionally to food for a technological purpose in the production process for the purpose of maintaining a food’s nutritional quality, for example by preventing the degradation of vitamins, essential amino acids, and unsaturated fats; extending the shelf life of a product, for example by preventing microbial growth; and maintaining and improving a product’s sensory properties, such as texture, consistency, taste, flavor, and color; Being able to provide products . Substances generally recognized as safe can be used as food additives ; however, misuse of substances such as using more than the maximum allowable concentration; using non-permitted substances; and blending of permitted and non-permitted substances together causes health hazards . Six of the included full-text articles revealed that outdated or foods past their use-by dates are being sold in food stores, shops, and restaurants which are contributing huge public health and environmental problems . The author of this review did not receive funds from any funding institution. Onianwa P, Lawal J, Ogunkeye A, Orejimi B. Cadmium and nickel composition of Nigerian foods. J Food Comp Analys. 2000;13:961–9. Pressman P, Clemens R, Hayes W, Reddy C. Food additive safety: a review of toxicologic and regulatory issues. Toxicol Res Appl. 2017;1:2397847317723572. Bansal S, Singh A, Mangal M, Mangal AK, Kumar S. Food adulteration: Sources, health risks, and detection methods. Crit Rev Food Sci Nutr. 2017;57:1174–89. Athukorala PC, Jayasuriya S. Food safety issues, trade and WTO rules: a developing country perspective. World Econ. 2003;26:1395–416. Markoff P and Leinberger K. Food mislabeling is more common than you think. Available at sumerlawchicago.com/blog/food-mislabeling-is-more-common-than-you-think.html . Accessed on 08 Aug 2019. Table 2 shows food safety–related public health risks in the food market by country name 2019 list). Among 21 full-text articles included for microbial contamination of foods, 13 were from developing countries. This may suggest microbial contamination of foods in the food market is a common public health risk in developing countries than the developed. Eight of 15 articles retrieved for chemical contamination of foods in the food market were from developing countries. The vast majority, 8 of 9 full-text articles retrieved for food adulteration were from developing countries, which may indicate adulteration of foods is practiced more of in developing countries. Similarly, 8 of 11 of the full-text articles included for misuse of food additives were from developing countries, which may show misuse of food additives is a common problem in developing countries. For mislabeling, 14 of 17 and 8 of 17 of the full-text articles were from developed and developing countries respectively. Four out of six of full-text articles retrieved for foods past use-by dates were from developing countries. This may show selling of outdated foods is common in developing countries than the developed. Rajakumar G, Manimegalai D. FPGA implementation of dip based adulteration identification in food samples. Int J Comput Appl. 2011:0975–8887. The authors read and approved the final manuscript. Conner AJ, Jacobs JM. Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 1999;443:223–34. Food safety is an important issue that affects all of the world’s people. Many countries throughout the world are increasingly interdependent on the availability of their food supply and on its safety. Hence, people all over the world increasingly value food safety; food production should be done safely to maximize public health gains and environmental benefits. Food safety deals with safeguarding the food supply chain from the introduction, growth, or survival of hazardous microbial and chemical agents . Bosko SA, Foley DM, Hellberg RS. Species substitution and country of origin mislabeling of catfish products on the US commercial market. Aquaculture. 2018;495:715–20. McGwin G Jr, Lienert J, Kennedy JI Jr. Formaldehyde exposure and asthma in children: a systematic review. Environ Health Perspect. 2009;118:313–7. Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, et al. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, DC, area. Appl Environ Microbiol. 2001;67:5431–6. Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia Vinci RM, Jacxsens L, De Meulenaer B, Deconink E, Matsiko E, Lachat C, et al. Occurrence of volatile organic compounds in foods from the Belgian market and dietary exposure assessment. Food Control. 2015;52:1–8. Sun Y-M, Ockerman H. A review of the needs and current applications of hazard analysis and critical control point system in foodservice areas. Food Control. 2005;16:325–32. Negri S. Food safety and global health: an international law perspective. Global Health Governance. 2009;3. Ayrapetyan M, Oliver JD. The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci. 2016;8:127–33. All the included full-text articles are published between 1991 and 2018 between 2011 and 2015; 16 between 2000 and 2005; 16 between 2006 and 2010; 12 between 2016 and 2018; and the rest 2 before 2000). PubMed   PubMed Central   Article   CAS   Google Scholar Onianwa P, Adeyemo A, Idowu O, Ogabiela E. Copper and zinc contents of Nigerian foods and estimates of the adult dietary intakes. Food Chem. 2001;72:89–95. Nel S, Lues J, Buys E, Venter P. Bacterial populations associated with meat from the deboning room of a high throughput red meat abattoir. Meat science. 2004;66:667–74. We searched published articles/or reports from MEDLINE/ PubMed, EMBASE, CINAHL, Access Medicine, Scopus, Web of Science, Google Scholar, WHO Library, FAO Libraries, and WTO Library. We also searched thesis and dissertations from Worldcat and ProQuest. We used a three step searching. In the first step, we conducted an initial limited search of MEDLINE and analyzed the text words contained in the title and abstract, and of the index terms used to describe articles. Secondly, we searched across all included databases using all identified keywords and index terms. Thirdly, references of all identified articles were searched to get additional studies. The search term we used in the initial searching is presented as follows. Simforian E, Nonga H, Ndabikunze B. Assessment of microbiological quality of raw fruit juice vended in Dar es Salaam City, Tanzania. Food Control. 2015;57:302–7. The included full-text articles were qualitatively analyzed using emergent thematic analysis approach to identify key concepts and coded them into related non-mutually exclusive themes. We then synthesized each theme by comparing the discussion and conclusion of the included articles. Emergent themes were identified based on meticulous and systematic reading. Coding and interpreting the data were refined during the analysis. Lyhs U, Korkeala H, Björkroth J. Identification of lactic acid bacteria from spoiled, vacuum-packaged ‘gravad’rainbow trout using ribotyping. Int J Food Microbiol. 2002;72:147–53. Sousa CPd. The impact of food manufacturing practices on food borne diseases. Brazilian Arch Biol Technology. 2008;51:615-623. Tripathi M, Khanna SK, Das M. Surveillance on use of synthetic colours in eatables vis a vis Prevention of Food Adulteration Act of India. Food Control. 2007;18:211–9. List of full text articles included in the review. We entirely relied on electronic databases to search relevant articles. We did not include articles available in hard copy. We believed we could get more relevant articles if we had access to hard prints. In order to minimize bias, we the reviewers independently extracted data from papers included in the review using JBI mixed methods data extraction form . The data extraction form was piloted on randomly selected papers and modified accordingly. Eligibility assessment was performed independently by the two reviewers. Information like authors, year of publication, study areas, type of studies, and focus of the study or main messages were extracted. Population, phenomena of interest, and context Adeyanju GT, Ishola O. Salmonella and Escherichia coli contamination of poultry meat from a processing plant and retail markets in Ibadan, Oyo State, Nigeria. Springerplus. 2014;3:139. Figure 3 shows comparison of food safety issues in developed and developing countries. A total of 37 and 50 articles were included in this review from developed and developing countries respectively. The comparison of food safety issues among developed countries suggests that mislabeling , microbial contaminations , and chemical contamination are the commonest food safety issues in the food market. Similarly, the comparison of food safety issues among developing countries suggests that microbial contaminations , chemical contaminations , food adulteration , misuse of additives , and mislabeling are the commonest food safety issues in the food market. Galal-Khallaf A, Ardura A, Mohammed-Geba K, Borrell YJ, Garcia-Vazquez E. DNA barcoding reveals a high level of mislabeling in Egyptian fish fillets. Food Control. 2014;46:441–5. Comparison of food safety issues in developed and developing countries Paudyal N, Anihouvi V, Hounhouigan J, Matsheka MI, Sekwati-Monang B, Amoa-Awua W, et al. Prevalence of foodborne pathogens in food from selected African countries–a meta-analysis. IntJ Food Microbiol. 2017;249:35–43. Bakke-McKellep A, Koppang E, Gunnes G, Sanden M, Hemre GI, Landsverk T, et al. Histological, digestive, metabolic, hormonal and some immune factor responses in Atlantic salmon, Salmo salar L., fed genetically modified soybeans. Journal of Fish Diseases. 2007;30:65–79. Nicolas B, Razack BA, Yollande I, Aly S, Tidiane OCA, Philippe NA, et al. Street-vended foods improvement: contamination mechanisms and application of food safety objective strategy: critical review. Pakistan J Nutri. 2007;6:1–10. Cárdenas C, Molina K, Heredia N, García S. Evaluation of microbial contamination of tomatoes and peppers at retail markets in Monterrey, Mexico. J Food Protect. 2013;76:1475–9. Fakruddin M, Mannan KS, Andrews S. Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol. 2013;2013:703813. Ashfaq N, Masud T. Surveillance on artifical colours in different ready to eat foods. Pakistan J Nutr. 2002;5:223–5. PubMed   PubMed Central   Article   Google Scholar Abdulkadir A, Dossa L, Lompo D-P, Abdu N, Van Keulen H. Characterization of urban and peri-urban agroecosystems in three West African cities. Int J Agric Sustain. 2012;10:289–314. André S, Zuber F, Remize F. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey. Int J Food Microbiol. 2013;165:134–43. Search results from different electronic databases were exported to Endnote reference manager to remove duplication. Two independent reviewers screened out articles using titles and abstracts. The reviewers further investigated and assessed full-text articles against the inclusion and exclusion criteria. The reviewers sat together to resolve disagreements during the review. The methodological quality of the included studies was assessed using mixed methods appraisal tool version 2018 . This method explains the detail of each criterion. The rating of each criterion was, therefore, done as per the detail explanations included in the method. Almost all of the included full-text articles fulfilled the criteria and all the included full-text articles were found to be better quality. Bakshi A. Potential adverse health effects of genetically modified crops. J Toxicol Environ Health Part B. 2003;6:211–25. The analysis of 81 full-text articles resulted in seven common public health risks related with food safety in the food market. Microbial contamination of foods, chemical contamination of foods, food adulteration, misuse of food additives, mislabeling, GM foods, and foods past their use-by dates were the identified food safety–related health risks in the food market . Unsafe food containing harmful bacteria, viruses, parasites, or chemical substances causes more than 200 diseases—ranging from diarrhea to cancers. An estimated 600 million in the world fall ill after eating contaminated food and 420,000 die every year, resulting in the loss of 33 million disability adjusted life years . Children under 5 years of age carry 40% of the food borne disease burden, with 125,000 deaths every year. Diarrheal diseases are the most common illnesses resulting from the consumption of contaminated food, causing 550 million people to fall ill and 230,000 deaths every year . The analysis of 81 full-text articles resulted in seven common public health risks related with food safety in the food market. Microbial contamination of foods, chemical contamination of foods, food adulteration, misuse of food additives, mislabeling, genetically modified foods , and outdated foods or foods past their use-by dates were the identified food safety–related public health risks in the food market. Staffen CF, Staffen MD, Becker ML, Löfgren SE, Muniz YCN, de Freitas RHA, et al. DNA barcoding reveals the mislabeling of fish in a popular tourist destination in Brazil. PeerJ. 2017;5:e4006. Lyhs U, Björkroth JK. Lactobacillus sakei/curvatus is the prevailing lactic acid bacterium group in spoiled maatjes herring. Food Microbiol. 2008;25:529–33. Fifteen of the full-text articles included in this review reported that contamination of foods with hazardous chemicals is a major public health concern associated with the food market. Heavy metals , pesticide residuals , persistent organic pollutants , organic compounds , volatile organic compounds , hydrocarbons , and other chemical compounds are chemical contaminants identified by the full-text articles included in this review. In most cases, the concentration of chemicals exceeded the tolerable limit for consumable food items . Kumari S, Sarkar PK. Prevalence and characterization of Bacillus cereus group from various marketed dairy products in India. Dairy Sci Technol. 2014;94:483–97. Swanson NL, Leu A, Abrahamson J, Wallet B. Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. J Organ Syst. 2014;9:6–37. In this systematic review of literature, 11 of 81 full-text articles showed that misuse of food additives in the food market endangers public health. As reported in the included full-text articles, even though some food colorants and sweeteners are permitted to use such as sunset yellow FCF , tartrazine, erythrosine, new coccine, ponceau, and saccharin , their concentration exceeded the prescribed limit. Moreover, use of non-permitted colorants and sweeteners such as rhodamine B, metanil yellow, orange II, malachite green, auramine, quinoline yellow, amaranth, carmoisine, Sudan dyes, and cyclamate is also commonly reported in the included studies . De Bon H, Parrot L, Moustier P. Sustainable urban agriculture in developing countries. A review. Agronomy Sustain Dev. 2010;30:21–32. Chanda T, Debnath G, Hossain M, Islam M, Begum M. Adulteration of raw milk in the rural areas of Barisal district of Bangladesh. Bangladesh J Anim Science. 2012;41:112–5. World Health Orgnization . Food safety fact sheet, 04 June 2019. Available at s-room/fact-sheets/detail/food-safety . Accessed on 06 Aug 2019. Mislabeling of food products has been mentioned as a major public health risk associated with food safety in the food market in 17 of the full-text articles included in this review . Mislabeling of food products includes false advertising, deliberately or accidentally leaving out ingredients, not listing potential health effects, and claiming a food contains ingredients that it does not for financial gain with the intent of deceiving the consumer regarding what is actually in the package . These acts of fraud have increased overtime as different parties such as manufacturers, co-packers, distributors, and others along the chain of distribution involve in the national or international trade. Mislabeling leads to cross-contamination, poor food quality, degradation of nutrients, and even adverse effects on human health, serious financial, and legal consequences . Zaied C, Abid S, Hlel W, Bacha H. Occurrence of patulin in apple-based-foods largely consumed in Tunisia. Food Control. 2013;31:263–7. Peng G-J, Chang M-H, Fang M, Liao C-D, Tsai C-F, Tseng S-H, et al. Incidents of major food adulteration in Taiwan between 2011 and 2015. Food Control. 2017;72:145–52. Gizaw, Z. Public health risks related to food safety issues in the food market: a systematic literature review. Environ Health Prev Med 24, 68 . s12199-019-0825-5 Albert I, Grenier E, Denis JB, Rousseau J. Quantitative risk assessment from farm to fork and beyond: a global Bayesian approach concerning food-borne diseases. Risk Anal. 2008;28:557–71. Hashimoto W, Momma K, Yoon H-J, Ozawa S, Ohkawa Y, Ishige T, et al. Safety assessment of transgenic potatoes with soybean glycinin by feeding studies in rats. Bioscience Biotechnology biochemistry. 1999;63:1942–6. Singuluri H, Sukumaran M. Milk adulteration in Hyderabad, India-a comparative study on the levels of different adulterants present in milk. J Chromatogr Sep Techn. 2014;5:1. Horchner PM, Brett D, Gormley B, Jenson I, Pointon AM. HACCP-based approach to the derivation of an on-farm food safety program for the Australian red meat industry. Food Control. 2006;17:497–510. Van Schothorst M. Microbiological risk assessment of foods in international trade. Safety Sci. 2002;40:359–82. Saleem N, Umar ZN. Survey on the use of synthetic food colors in food samples procured from different educational institutes of Karachi City. J Trop Life Sci. 2013;3:1–7. Heredia N, Garcia S, Rojas G, Salazar L. Microbiological condition of ground meat retailed in Monterrey, Mexico. Journal of food protection. 2001;64:1249–51. Baumgartner M, Flöck M, Winter P, et al. Evaluation of flow injection analysis for determination of urea in sheep’s and cow’s milk. Acta Veterinaria Hungarica. 2002;50:263–71. Ali MH, Al-Qahtani KM. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aquatic Res. 2012;38:31–7. Nine of the full-text articles included in this review reported that food adulteration is a major public health risk associated with food safety issues in the food market. Chemicals, items which are not the genuine component of foods, poor-quality products, and physical or inert agents are the commonest adulterants added . Food adulteration involves intentional or unintentional addition of useless, harmful, unnecessary chemical, physical, and biological agents to food which decreases the quality of food. It also includes removal of genuine components and processing foods in unhygienic way . However, removal of genuine components of food is not considered in this review. Food is adulterated to increase the quantity and make more profit, which is economically motivated adulteration . Chemicals which are being used as adulterants have a wide range of serious effects on the health of consumers including cancer . Man SM. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol. 2011;8:669–85. Environmental Health and Preventive Medicine volume  24 , Article number:  68 Cite this article Conner AJ, Glare TR, Nap JP. The release of genetically modified crops into the environment: Part II. Overview of ecological risk assessment. Plant J. 2003;33:19–46. Hawkes C. Uneven dietary development: linking the policies and processes of globalization with the nutrition transition, obesity and diet-related chronic diseases. Global Health. 2006;2:4. Domınguez C, Gomez I, Zumalacarregui J. Prevalence of Salmonella and Campylobacter in retail chicken meat in Spain. International Journal of Food Microbiology. 2002;72:165–8. Sood M. The supervision of government on implementation of import of processed food products in effort of legal protection for consumers. JL Pol’y & Globalization. 2014;25:72. Food safety in the food market is one of the key areas of focus in public health, because it affects people of every age, race, gender, and income level around the world. The local and international food marketing continues to have significant impacts on food safety and health of the public. Food supply chains now cross multiple national borders which increase the internationalization of health risks. This systematic review of literature was, therefore, conducted to identify common public health risks related to food safety issues in the food market. Pérez-Rodríguez F, Castro R, Posada-Izquierdo G, Valero A, Carrasco E, García-Gimeno R, et al. Evaluation of hygiene practices and microbiological quality of cooked meat products during slicing and handling at retail. Meat Science. 2010;86:479–85. PubMed   PubMed Central   Google Scholar Di Pinto A, Bottaro M, Bonerba E, Bozzo G, Ceci E, Marchetti P, et al. Occurrence of mislabeling in meat products using DNA-based assay. J Food Sci Technol. 2015;52:2479–84. Acosta O, Chaparro A. Genetically modified food crops and public health. Acta Biologica Colombiana. 2008;13:3–26. Ahl A, Buntain B. Risk and the food safety chain: animal health, public health and the environment. Revue Scientifique et Technique-Office International des Epizooties. 1997;16:322–30. Bai Y, Zhou L, Wang J. Organophosphorus pesticide residues in market foods in Shaanxi area, China. Food Chem. 2006;98:240–2. Radovanovic R. Food safety: the global problem as a challenge for future initiatives and activities. Advances in Food Protection: Springer; 2011. p. 27-48. Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. Food spoilage—interactions between food spoilage bacteria. Int J Food Microbiol. 2002;78:79–97. Burnett K, Skinner K, LeBlanc J. From Food Mail to Nutrition North Canada: reconsidering federal food subsidy programs for northern Ontario. Canadian Food Studies/La Revue canadienne des études sur l'alimentation. 2015;2:141–56. PubMed   PubMed Central   Google Scholar Hossain MM, Heinonen V, Islam KZ. Consumption of foods and foodstuffs processed with hazardous chemicals: a case study of Bangladesh. Int J Consum Stud. 2008;32:588–95. Dixit S, Purshottam S, Khanna S, Das M. Usage pattern of synthetic food colours in different states of India and exposure assessment through commodities preferentially consumed by children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28:996–1005. Rather IA, Koh WY, Paek WK, Lim J. The sources of chemical contaminants in food and their health implications. Front Pharmacol. 2017;8:830. Bagumire A, Todd EC, Nasinyama GW, Muyanja C, Rumbeiha WK, Harris C, et al. Potential sources of food hazards in emerging commercial aquaculture industry in sub-Saharan Africa: a case study for Uganda. Int J Food Sci Technol. 2009;44:1677–87. Vinci RM, Jacxsens L, Van Loco J, Matsiko E, Lachat C, de Schaetzen T, et al. Assessment of human exposure to benzene through foods from the Belgian market. Chemosphere. 2012;88:1001–7. Miller DD, Mariani S. Smoke, mirrors, and mislabeled cod: poor transparency in the European seafood industry. Front Ecol Environ. 2010;8:517–21. Pattron DD. A survey of genetically modified foods consumed, health implications and recommendations for public health food safety in Trinidad. Internet J Food Safety. 2005;7:4–14. Legnani P, Leoni E, Berveglieri M, Mirolo G, Alvaro N. Hygienic control of mass catering establishments, microbiological monitoring of food and equipment. Food Control. 2004;15:205–11. Henson S, Jaffee S. Food safety standards and trade: enhancing competitiveness and avoiding exclusion of developing countries. Eur J Dev Res. 2006;18:593–621. Woldemariam HW, Abera BD. The extent of adulteration of selected foods at Bahir Dar, Ethiopia. Int J Interdisciplin Res. 2014;1:1–6. CAS   PubMed   PubMed Central   Google Scholar Vantarakis A, Affifi M, Kokkinos P, Tsibouxi M, Papapetropoulou M. Occurrence of microorganisms of public health and spoilage significance in fruit juices sold in retail markets in Greece. Anaerobe. 2011;17:288–91. Scheule B, Sneed J. From farm to fork: critical control points for food safety. J Nutr Recipe Menu Dev. 2001;3:3–23. Frewer LJ, Scholderer J, Bredahl L. Communicating about the risks and benefits of genetically modified foods: the mediating role of trust. Risk Anal. 2003;23:1117–33. What food safety–related public health risks are commonly found in the food market? food safety articles on economics